Study on solutions of boundary value problems for nonlinear fractional differential equations of variable order

dc.contributor.authorBENKERROUCHE Amar
dc.contributor.authorEncadreur: HAKEM Ali
dc.date.accessioned2024-01-23T14:49:52Z
dc.date.available2024-01-23T14:49:52Z
dc.date.issued2022-01-17
dc.descriptionDoctorat en Sciences
dc.description.abstractالملخص (بالعربية) : في هذه الأطروحة، ندرس وجود حلول للمشكلات الحدودية للمعادلات التفاضلية الكسرية ذات الترتيب المتغير بمشتقات مختلفة ( ريمان ليوفيل، كابوتو، هادامار). تستند نتائج هذه الدراسة إلى نظرية النقطة الثابتة لداربو جنبًا إلى جنب مع مقياس عدم التراص لكوراتوفسكي أو نظرية النقطة الثابتة كراسنوسلسكي. بالإضافة إلى ذلك ، نقوم بدراسة استقرار الحلول المحصل عليها وفق معيار ايلام-آير أو ايلام-آير-راسياس. نعطي امثلة لتوضيح صحة النتائج المرصودة. الكلمات المفتاحية : المعادلات التفاضلية الكسرية ذات الترتيب المتغير، مسألة القيم الحدية، نظرية النقطة الثابتة لكراسنوسيلسكي، نظرية النقطة الثابتة لـداربو، مقياس عدم التراص لكوراتوفسكي، استقرار إيلام – آير- راسياس. Résumé (en Français) : Dans cette thèse, nous étudions l'existence de solutions aux problèmes aux limites pour des équations différentielles fractionnaires d'ordre variable avec des dérivées différentes ( Riemann-Liouville, Caputo, Hadamard ). Les résultats de cette étude sont basés sur le théorème du point fixe de Darbo combiné avec la mesure de non-compactité de Kuratowski ou le théorème du point fixe de Krasnoselskii. De plus, nous étudions la stabilité des solutions obtenues au sens d'Ulam-Hyers ou d'Ulam-Hyers-Rassias. Nous construisons des exemples pour illustrer la validité des résultats observés. Les mots clés : équations différentielles fractionnaires d'ordre variable, problème aux limites, théorème du point fixe de Darbo, théorème du point fixe de Krasnoselskii, mesure de non-compactité de Kuratowski, stabilité d'Ulam-Hyers-Rassias Abstract (en Anglais) : In this thesis, we study the existence of solutions to boundary problems for fractional differential equations of variable order with different derivatives ( Riemann-Liouville, Caputo, Hadamard ). The results of this study are based on Darbo's fixed point theorem combined with the Kuratowski measure of non-compactness or the Krasnoselskii fixed point theorem. In addition, we study the stability of the solutions obtained in the sense of Ulam-Hyers or Ulam-Hyers-Rassias. We construct examples to illustrate the validity of the observed results. Keywords : fractional differential equations of variable order, boundary value problem, Darbo's fixed point theorem, Krasnoselskii fixed point theorem, Kuratowski measure of noncompactness, Ulam-Hyers-Rassias stability.
dc.identifier.urihttps://dspace.univ-sba.dz/handle/123456789/946
dc.titleStudy on solutions of boundary value problems for nonlinear fractional differential equations of variable order
dc.typeThesis
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DS_Math_BENKERROUCHE_Amar.pdf
Size:
528.5 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: